
Nixpkgs Manual i

Nixpkgs Manual

Draft (Version 1.0)

Nixpkgs Manual ii

Copyright © 2008-2012 Eelco Dolstra

Nixpkgs Manual iii

Contents

1 Introduction 1

2 Quick Start to Adding a Package 2

3 The Standard Environment 4

3.1 Using stdenv . 4

3.2 Tools provided by stdenv . 5

3.3 Attributes . 6

3.4 Phases . 6

3.4.1 Controlling phases . 6

3.4.2 The unpack phase . 7

3.4.3 The patch phase . 7

3.4.4 The configure phase . 8

3.4.5 The build phase . 8

3.4.6 The check phase . 9

3.4.7 The install phase . 9

3.4.8 The fixup phase . 9

3.4.9 The distribution phase . 10

3.5 Shell functions . 10

3.6 Package setup hooks . 11

3.7 Purity in Nixpkgs . 12

4 Meta-attributes 13

4.1 Standard meta-attributes . 13

4.2 Licenses . 14

5 Support for specific programming languages 15

5.1 Perl . 15

5.2 Python . 16

5.3 Java . 17

Nixpkgs Manual iv

6 Package Notes 18

6.1 Linux kernel . 18

6.2 X.org . 19

7 Coding conventions 20

7.1 Syntax . 20

7.2 Package naming . 22

7.3 File naming and organisation . 23

7.3.1 Hierachy . 23

7.3.2 Versioning . 24

Nixpkgs Manual 1 / 24

Chapter 1

Introduction

This manual tells you how to write packages for the Nix Packages collection (Nixpkgs). Thus it’s for packagers and developers
who want to add packages to Nixpkgs. End users are kindly referred to the Nix manual.

This manual does not describe the syntax and semantics of the Nix expression language, which are given in the Nix manual in the
chapter on writing Nix expressions. It only describes the facilities provided by Nixpkgs to make writing packages easier, such as
the standard build environment (stdenv).

http://hydra.nixos.org/job/nix/trunk/tarball/latest/download-by-type/doc/manual
http://hydra.nixos.org/job/nix/trunk/tarball/latest/download-by-type/doc/manual/#chap-writing-nix-expressions

Nixpkgs Manual 2 / 24

Chapter 2

Quick Start to Adding a Package

To add a package to Nixpkgs:

1. Checkout the Nixpkgs source tree:

$ git clone git://github.com/NixOS/nixpkgs.git
$ cd nixpkgs

2. Find a good place in the Nixpkgs tree to add the Nix expression for your package. For instance, a library package typically
goes into pkgs/development/libraries/pkgname, while a web browser goes into pkgs/applications/
networking/browsers/pkgname. See Section 7.3 for some hints on the tree organisation. Create a directory for
your package, e.g.

$ mkdir pkgs/development/libraries/libfoo

3. In the package directory, create a Nix expression — a piece of code that describes how to build the package. In this case,
it should be a function that is called with the package dependencies as arguments, and returns a build of the package in the
Nix store. The expression should usually be called default.nix.

$ emacs pkgs/development/libraries/libfoo/default.nix
$ git add pkgs/development/libraries/libfoo/default.nix

You can have a look at the existing Nix expressions under pkgs/ to see how it’s done. Here are some good ones:

• GNU cpio: pkgs/tools/archivers/cpio/default.nix. The simplest possible package. The generic builder
in stdenv does everything for you. It has no dependencies beyond stdenv.

• GNU Hello: pkgs/applications/misc/hello/ex-2/default.nix. Also trivial, but it specifies some
meta attributes which is good practice.

• GNU Multiple Precision arithmetic library (GMP): pkgs/development/libraries/gmp/default.nix. Also
done by the generic builder, but has a dependency on m4.

• Pan, a GTK-based newsreader: pkgs/applications/networking/newsreaders/pan/default.nix. Has
an optional dependency on gtkspell, which is only built if spellCheck is true.

• Apache HTTPD: pkgs/servers/http/apache-httpd/default.nix. A bunch of optional features, variable
substitutions in the configure flags, a post-install hook, and miscellaneous hackery.

• BitTorrent (wxPython-based): pkgs/tools/networking/p2p/bittorrent/default.nix. Uses an exter-
nal build script, which can be useful if you have lots of code that you don’t want cluttering up the Nix expression. But
external builders are mostly obsolete.

• Thunderbird: pkgs/applications/networking/mailreaders/thunderbird/3.x.nix. Lots of depen-
dencies.

• JDiskReport, a Java utility: pkgs/tools/misc/jdiskreport/default.nix (and the builder). Nixpkgs doesn’t
have a decent stdenv for Java yet so this is pretty ad-hoc.

https://github.com/NixOS/nixpkgs/blob/master/pkgs/tools/archivers/cpio/default.nix
https://github.com/NixOS/nixpkgs/blob/master/pkgs/applications/misc/hello/ex-2/default.nix
https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/libraries/gmp/default.nix
https://github.com/NixOS/nixpkgs/blob/master/pkgs/applications/networking/newsreaders/pan/default.nix
https://github.com/NixOS/nixpkgs/blob/master/pkgs/servers/http/apache-httpd/default.nix
https://github.com/NixOS/nixpkgs/blob/master/pkgs/tools/networking/p2p/bittorrent/default.nix
https://github.com/NixOS/nixpkgs/blob/master/pkgs/tools/networking/p2p/bittorrent/builder.sh
https://github.com/NixOS/nixpkgs/blob/master/pkgs/applications/networking/mailreaders/thunderbird/3.x.nix
https://github.com/NixOS/nixpkgs/blob/master/pkgs/tools/misc/jdiskreport/default.nix
https://github.com/NixOS/nixpkgs/blob/master/pkgs/tools/misc/jdiskreport/builder.sh

Nixpkgs Manual 3 / 24

• XML::Simple, a Perl module: pkgs/top-level/perl-packages.nix (search for the XMLSimple attribute).
Most Perl modules are so simple to build that they are defined directly in perl-packages.nix; no need to make a
separate file for them.

• Adobe Reader: pkgs/applications/misc/adobe-reader/default.nix. Shows how binary-only pack-
ages can be supported. In particular the builder uses patchelf to set the RUNPATH and ELF interpreter of the executables
so that the right libraries are found at runtime.

Some notes:

• All meta attributes are optional, but it’s still a good idea to provide at least the description, homepage and
license.

• You can use nix-prefetch-url url to get the SHA-256 hash of source distributions.

• A list of schemes for mirror:// URLs can be found in pkgs/build-support/fetchurl/mirrors.nix.

The exact syntax and semantics of the Nix expression language, including the built-in function, are described in the Nix
manual in the chapter on writing Nix expressions.

4. Add a call to the function defined in the previous step to pkgs/top-level/all-packages.nix with some descrip-
tive name for the variable, e.g. libfoo.

$ emacs pkgs/top-level/all-packages.nix

The attributes in that file are sorted by category (like “Development / Libraries”) that more-or-less correspond to the
directory structure of Nixpkgs, and then by attribute name.

5. Test whether the package builds:

$ nix-build -A libfoo

where libfoo should be the variable name defined in the previous step. You may want to add the flag -K to keep the
temporary build directory in case something fails. If the build succeeds, a symlink ./result to the package in the Nix
store is created.

6. If you want to install the package into your profile (optional), do

$ nix-env -f . -iA libfoo

7. Optionally commit the new package, or send a patch to nix-dev@cs.uu.nl.

8. If you want the TU Delft build farm to build binaries of the package and make them available in the nixpkgs channel,
add it to pkgs/top-level/release.nix.

https://github.com/NixOS/nixpkgs/blob/master/pkgs/top-level/perl-packages.nix
https://github.com/NixOS/nixpkgs/blob/master/pkgs/applications/misc/adobe-reader/default.nix
https://github.com/NixOS/nixpkgs/blob/master/pkgs/applications/misc/adobe-reader/builder.sh
https://github.com/NixOS/nixpkgs/blob/master/pkgs/build-support/fetchurl/mirrors.nix
http://hydra.nixos.org/job/nix/trunk/tarball/latest/download-by-type/doc/manual/#chap-writing-nix-expressions
https://github.com/NixOS/nixpkgs/blob/master/pkgs/top-level/all-packages.nix
http://nixos.org/releases/nixpkgs/channels/nixpkgs-unstable/
https://github.com/NixOS/nixpkgs/blob/master/pkgs/top-level/release.nix

Nixpkgs Manual 4 / 24

Chapter 3

The Standard Environment

The standard build environment in the Nix Packages collection provides a environment for building Unix packages that does a lot
of common build tasks automatically. In fact, for Unix packages that use the standard ./configure;make;make install
build interface, you don’t need to write a build script at all; the standard environment does everything automatically. If stdenv
doesn’t do what you need automatically, you can easily customise or override the various build phases.

3.1 Using stdenv

To build a package with the standard environment, you use the function stdenv.mkDerivation, instead of the primitive
built-in function derivation, e.g.

stdenv.mkDerivation {
name = "libfoo-1.2.3";
src = fetchurl {
url = http://example.org/libfoo-1.2.3.tar.bz2;
md5 = "e1ec107956b6ddcb0b8b0679367e9ac9";

};
}

(stdenv needs to be in scope, so if you write this in a separate Nix expression from pkgs/all-packages.nix, you need
to pass it as a function argument.) Specifying a name and a src is the absolute minimum you need to do. Many packages
have dependencies that are not provided in the standard environment. It’s usually sufficient to specify those dependencies in the
buildInputs attribute:

stdenv.mkDerivation {
name = "libfoo-1.2.3";
...
buildInputs = [libbar perl ncurses];

}

This attribute ensures that the bin subdirectories of these packages appear in the PATH environment variable during the build,
that their include subdirectories are searched by the C compiler, and so on. (See Section 3.6 for details.)

Often it is necessary to override or modify some aspect of the build. To make this easier, the standard environment breaks the
package build into a number of phases, all of which can be overriden or modified individually: unpacking the sources, applying
patches, configuring, building, and installing. (There are some others; see Section 3.4.) For instance, a package that doesn’t
supply a makefile but instead has to be compiled “manually” could be handled like this:

stdenv.mkDerivation {
name = "fnord-4.5";
...
buildPhase = ’’

Nixpkgs Manual 5 / 24

gcc foo.c -o foo
’’;
installPhase = ’’
mkdir -p $out/bin
cp foo $out/bin

’’;
}

(Note the use of ”-style string literals, which are very convenient for large multi-line script fragments because they don’t need
escaping of " and \, and because indentation is intelligently removed.)

There are many other attributes to customise the build. These are listed in Section 3.3.

While the standard environment provides a generic builder, you can still supply your own build script:

stdenv.mkDerivation {
name = "libfoo-1.2.3";
...
builder = ./builder.sh;

}

where the builder can do anything it wants, but typically starts with

source $stdenv/setup

to let stdenv set up the environment (e.g., process the buildInputs). If you want, you can still use stdenv’s generic
builder:

source $stdenv/setup

buildPhase() {
echo "... this is my custom build phase ..."
gcc foo.c -o foo

}

installPhase() {
mkdir -p $out/bin
cp foo $out/bin

}

genericBuild

3.2 Tools provided by stdenv

The standard environment provides the following packages:

• The GNU C Compiler, configured with C and C++ support.

• GNU coreutils (contains a few dozen standard Unix commands).

• GNU findutils (contains find).

• GNU diffutils (contains diff, cmp).

• GNU sed.

• GNU grep.

• GNU awk.

• GNU tar.

Nixpkgs Manual 6 / 24

• gzip and bzip2.

• GNU Make. It has been patched to provide “nested” output that can be fed into the nix-log2xml command and log2html
stylesheet to create a structured, readable output of the build steps performed by Make.

• Bash. This is the shell used for all builders in the Nix Packages collection. Not using /bin/sh removes a large source of
portability problems.

• The patch command.

On Linux, stdenv also includes the patchelf utility.

3.3 Attributes

VARIABLES AFFECTING STDENV INITIALISATION

NIX_DEBUG If set, stdenv will print some debug information during the build. In particular, the gcc and ld wrapper scripts
will print out the complete command line passed to the wrapped tools.

buildInputs A list of dependencies used by stdenv to set up the environment for the build. For each dependency dir, the
directory dir/bin, if it exists, is added to the PATH environment variable. Other environment variables are also set up
via a pluggable mechanism. For instance, if buildInputs contains Perl, then the lib/site_perl subdirectory of
each input is added to the PERL5LIB environment variable. See Section 3.6 for details.

propagatedBuildInputs Like buildInputs, but these dependencies are propagated: that is, the dependencies listed
here are added to the buildInputs of any package that uses this package as a dependency. So if package Y has
propagatedBuildInputs =[X], and package Z has buildInputs =[Y], then package X will appear in Z’s
build environment automatically.

3.4 Phases

The generic builder has a number of phases. Package builds are split into phases to make it easier to override specific parts of the
build (e.g., unpacking the sources or installing the binaries). Furthermore, it allows a nicer presentation of build logs in the Nix
build farm.

Each phase can be overriden in its entirety either by setting the environment variable namePhase to a string containing some
shell commands to be executed, or by redefining the shell function namePhase. The former is convenient to override a phase
from the derivation, while the latter is convenient from a build script.

3.4.1 Controlling phases

There are a number of variables that control what phases are executed and in what order:

VARIABLES AFFECTING PHASE CONTROL

phases Specifies the phases. You can change the order in which phases are executed, or add new phases, by setting this variable.
If it’s not set, the default value is used, which is $prePhases unpackPhase patchPhase $preConfigurePha
ses configurePhase $preBuildPhases buildPhase checkPhase $preInstallPhases install
Phase fixupPhase $preDistPhases distPhase $postPhases.

Usually, if you just want to add a few phases, it’s more convenient to set one of the variables below (such as preInstal
lPhases), as you then don’t specify all the normal phases.

prePhases Additional phases executed before any of the default phases.

preConfigurePhases Additional phases executed just before the configure phase.

Nixpkgs Manual 7 / 24

preBuildPhases Additional phases executed just before the build phase.

preInstallPhases Additional phases executed just before the install phase.

preDistPhases Additional phases executed just before the distribution phase.

postPhases Additional phases executed after any of the default phases.

3.4.2 The unpack phase

The unpack phase is responsible for unpacking the source code of the package. The default implementation of unpackPhase
unpacks the source files listed in the src environment variable to the current directory. It supports the following files by default:

Tar files These can optionally be compressed using gzip (.tar.gz, .tgz or .tar.Z) or bzip2 (.tar.bz2 or .tbz2).

Zip files Zip files are unpacked using unzip. However, unzip is not in the standard environment, so you should add it to
buildInputs yourself.

Directories in the Nix store These are simply copied to the current directory. The hash part of the file name is stripped, e.g.
/nix/store/1wydxgby13cz...-my-sources would be copied to my-sources.

Additional file types can be supported by setting the unpackCmd variable (see below).

VARIABLES CONTROLLING THE UNPACK PHASE

srcs / src The list of source files or directories to be unpacked or copied. One of these must be set.

sourceRoot After running unpackPhase, the generic builder changes the current directory to the directory created by
unpacking the sources. If there are multiple source directories, you should set sourceRoot to the name of the intended
directory.

setSourceRoot Alternatively to setting sourceRoot, you can set setSourceRoot to a shell command to be evaluated
by the unpack phase after the sources have been unpacked. This command must set sourceRoot.

preUnpack Hook executed at the start of the unpack phase.

postUnpack Hook executed at the end of the unpack phase.

dontMakeSourcesWritable If set to 1, the unpacked sources are not made writable. By default, they are made writable
to prevent problems with read-only sources. For example, copied store directories would be read-only without this.

unpackCmd The unpack phase evaluates the string $unpackCmd for any unrecognised file. The path to the current source file
is contained in the curSrc variable.

3.4.3 The patch phase

The patch phase applies the list of patches defined in the patches variable.

VARIABLES CONTROLLING THE PATCH PHASE

patches The list of patches. They must be in the format accepted by the patch command, and may optionally be compressed
using gzip (.gz) or bzip2 (.bz2).

patchFlags Flags to be passed to patch. If not set, the argument -p1 is used, which causes the leading directory component
to be stripped from the file names in each patch.

prePatch Hook executed at the start of the patch phase.

postPatch Hook executed at the end of the patch phase.

Nixpkgs Manual 8 / 24

3.4.4 The configure phase

The configure phase prepares the source tree for building. The default configurePhase runs ./configure (typically an
Autoconf-generated script) if it exists.

VARIABLES CONTROLLING THE CONFIGURE PHASE

configureScript The name of the configure script. It defaults to ./configure if it exists; otherwise, the configure
phase is skipped. This can actually be a command (like perl ./Configure.pl).

configureFlags Additional arguments passed to the configure script.

configureFlagsArray A shell array containing additional arguments passed to the configure script. You must use this
instead of configureFlags if the arguments contain spaces.

dontAddPrefix By default, the flag --prefix=$prefix is added to the configure flags. If this is undesirable, set this
variable to a non-empty value.

prefix The prefix under which the package must be installed, passed via the --prefix option to the configure script. It
defaults to $out.

dontAddDisableDepTrack By default, the flag --disable-dependency-tracking is added to the configure flags
to speed up Automake-based builds. If this is undesirable, set this variable to a non-empty value.

dontFixLibtool By default, the configure phase applies some special hackery to all files called ltmain.sh before running
the configure script in order to improve the purity of Libtool-based packages1. If this is undesirable, set this variable to a
non-empty value.

preConfigure Hook executed at the start of the configure phase.

postConfigure Hook executed at the end of the configure phase.

3.4.5 The build phase

The build phase is responsible for actually building the package (e.g. compiling it). The default buildPhase simply calls
make if a file named Makefile, makefile or GNUmakefile exists in the current directory (or the makefile is explicitly
set); otherwise it does nothing.

VARIABLES CONTROLLING THE BUILD PHASE

makefile The file name of the Makefile.

makeFlags Additional flags passed to make. These flags are also used by the default install and check phase. For setting
make flags specific to the build phase, use buildFlags (see below).

makeFlagsArray A shell array containing additional arguments passed to make. You must use this instead of makeFlags
if the arguments contain spaces, e.g.

makeFlagsArray=(CFLAGS="-O0 -g" LDFLAGS="-lfoo -lbar")

Note that shell arrays cannot be passed through environment variables, so you cannot set makeFlagsArray in a deriva-
tion attribute (because those are passed through environment variables): you have to define them in shell code.

buildFlags / buildFlagsArray Additional flags passed to make. Like makeFlags and makeFlagsArray, but only
used by the build phase.

preBuild Hook executed at the start of the build phase.

postBuild Hook executed at the end of the build phase.

You can set flags for make through the makeFlags variable.

Before and after running make, the hooks preBuild and postBuild are called, respectively.
1It clears the sys_lib_*search_path variables in the Libtool script to prevent Libtool from using libraries in /usr/lib and such.

Nixpkgs Manual 9 / 24

3.4.6 The check phase

The check phase checks whether the package was built correctly by running its test suite. The default checkPhase calls make
check, but only if the doCheck variable is enabled.

VARIABLES CONTROLLING THE CHECK PHASE

doCheck If set to a non-empty string, the check phase is executed, otherwise it is skipped (default). Thus you should set

doCheck = true;

in the derivation to enable checks.

makeFlags / makeFlagsArray / makefile See the build phase for details.

checkTarget The make target that runs the tests. Defaults to check.

checkFlags / checkFlagsArray Additional flags passed to make. Like makeFlags and makeFlagsArray, but only
used by the check phase.

preCheck Hook executed at the start of the check phase.

postCheck Hook executed at the end of the check phase.

3.4.7 The install phase

The install phase is responsible for installing the package in the Nix store under out. The default installPhase creates the
directory $out and calls make install.

VARIABLES CONTROLLING THE CHECK PHASE

makeFlags / makeFlagsArray / makefile See the build phase for details.

installTargets The make targets that perform the installation. Defaults to install. Example:

installTargets = "install-bin install-doc";

installFlags / installFlagsArray Additional flags passed to make. Like makeFlags and makeFlagsArray,
but only used by the install phase.

preInstall Hook executed at the start of the install phase.

postInstall Hook executed at the end of the install phase.

3.4.8 The fixup phase

The fixup phase performs some (Nix-specific) post-processing actions on the files installed under $out by the install phase. The
default fixupPhase does the following:

• It moves the man/, doc/ and info/ subdirectories of $out to share/.

• It strips libraries and executables of debug information.

• On Linux, it applies the patchelf command to ELF executables and libraries to remove unused directories from the RPATH in
order to prevent unnecessary runtime dependencies.

• It rewrites the interpreter paths of shell scripts to paths found in PATH. E.g., /usr/bin/perl will be rewritten to /nix/
store/some-perl/bin/perl found in PATH.

VARIABLES CONTROLLING THE CHECK PHASE

Nixpkgs Manual 10 / 24

dontStrip If set, libraries and executables are not stripped. By default, they are.

stripAllList List of directories to search for libraries and executables from which all symbols should be stripped. By
default, it’s empty. Stripping all symbols is risky, since it may remove not just debug symbols but also ELF information
necessary for normal execution.

stripAllFlags Flags passed to the strip command applied to the files in the directories listed in stripAllList. Defaults
to -s (i.e. --strip-all).

stripDebugList List of directories to search for libraries and executables from which only debugging-related symbols
should be stripped. It defaults to lib bin sbin.

stripDebugFlags Flags passed to the strip command applied to the files in the directories listed in stripDebugList.
Defaults to -S (i.e. --strip-debug).

dontPatchELF If set, the patchelf command is not used to remove unnecessary RPATH entries. Only applies to Linux.

dontPatchShebangs If set, scripts starting with #! do not have their interpreter paths rewritten to paths in the Nix store.

forceShare The list of directories that must be moved from $out to $out/share. Defaults to man doc info.

setupHook A package can export a setup hook by setting this variable. The setup hook, if defined, is copied to $out/
nix-support/setup-hook. Environment variables are then substituted in it using substituteAll.

preFixup Hook executed at the start of the fixup phase.

postFixup Hook executed at the end of the fixup phase.

3.4.9 The distribution phase

The distribution phase is intended to produce a source distribution of the package. The default distPhase first calls make
dist, then it copies the resulting source tarballs to $out/tarballs/. This phase is only executed if the attribute doDist is
set.

VARIABLES CONTROLLING THE DISTRIBUTION PHASE

distTarget The make target that produces the distribution. Defaults to dist.

distFlags / distFlagsArray Additional flags passed to make.

tarballs The names of the source distribution files to be copied to $out/tarballs/. It can contain shell wildcards. The
default is *.tar.gz.

dontCopyDist If set, no files are copied to $out/tarballs/.

preDist Hook executed at the start of the distribution phase.

postDist Hook executed at the end of the distribution phase.

3.5 Shell functions

The standard environment provides a number of useful functions.

substitute infile outfile subs Performs string substitution on the contents of infile, writing the result to outfile.
The substitutions in subs are of the following form:

--replace s1 s2 Replace every occurence of the string s1 by s2.

--subst-var varName Replace every occurence of @varName@ by the contents of the environment variable varName.
This is useful for generating files from templates, using @...@ in the template as placeholders.

--subst-var-by varName s Replace every occurence of @varName@ by the string s.

Nixpkgs Manual 11 / 24

Example:

substitute ./foo.in ./foo.out \
--replace /usr/bin/bar $bar/bin/bar \
--replace "a string containing spaces" "some other text" \
--subst-var someVar

substitute is implemented using the replace command. Unlike with the sed command, you don’t have to worry about
escaping special characters. It supports performing substitutions on binary files (such as executables), though there you’ll
probably want to make sure that the replacement string is as long as the replaced string.

substituteInPlace file subs Like substitute, but performs the substitutions in place on the file file.

substituteAll infile outfile Replaces every occurence of @varName@, where varName is any environment variable,
in infile, writing the result to outfile. For instance, if infile has the contents

#! @bash@/bin/sh
PATH=@coreutils@/bin
echo @foo@

and the environment contains bash=/nix/store/bmwp0q28cf21...-bash-3.2-p39 and coreutils=/nix/
store/68afga4khv0w...-coreutils-6.12, but does not contain the variable foo, then the output will be

#! /nix/store/bmwp0q28cf21...-bash-3.2-p39/bin/sh
PATH=/nix/store/68afga4khv0w...-coreutils-6.12/bin
echo @foo@

That is, no substitution is performed for undefined variables.

substituteAllInPlace file Like substituteAll, but performs the substitutions in place on the file file.

stripHash path Strips the directory and hash part of a store path, and prints (on standard output) only the name part. For
instance, stripHash /nix/store/68afga4khv0w...-coreutils-6.12 print coreutils-6.12.

3.6 Package setup hooks

The following packages provide a setup hook:

GCC wrapper Adds the include subdirectory of each build input to the NIX_CFLAGS_COMPILE environment variable,
and the lib and lib64 subdirectories to NIX_LDFLAGS.

Perl Adds the lib/site_perl subdirectory of each build input to the PERL5LIB environment variable.

Python Adds the lib/python2.5/site-packages subdirectory of each build input to the PYTHONPATH environment
variable.

Note
This should be generalised: the Python version shouldn’t be hard-coded.

pkg-config Adds the lib/pkgconfig and share/pkgconfig subdirectories of each build input to the PKG_CONFIG_P
ATH environment variable.

Automake Adds the share/aclocal subdirectory of each build input to the ACLOCAL_PATH environment variable.

libxml2 Adds every file named catalog.xml found under the xml/dtd and xml/xsl subdirectories of each build input to
the XML_CATALOG_FILES environment variable.

teTeX / TeX Live Adds the share/texmf-nix subdirectory of each build input to the TEXINPUTS environment variable.

Qt Sets the QTDIR environment variable to Qt’s path.

GHC Creates a temporary package database and registers every Haskell build input in it (TODO: how?).

Nixpkgs Manual 12 / 24

3.7 Purity in Nixpkgs

[measures taken to prevent dependencies on packages outside the store, and what you can do to prevent them]

GCC doesn’t search in locations such as /usr/include. In fact, attempts to add such directories through the -I flag are
filtered out. Likewise, the linker (from GNU binutils) doesn’t search in standard locations such as /usr/lib. Programs built
on Linux are linked against a GNU C Library that likewise doesn’t search in the default system locations.

Nixpkgs Manual 13 / 24

Chapter 4

Meta-attributes

Nix packages can declare meta-attributes that contain information about a package such as a description, its homepage, its
license, and so on. For instance, the GNU Hello package has a meta declaration like this:

meta = {
description = "A program that produces a familiar, friendly greeting";
longDescription = ’’
GNU Hello is a program that prints "Hello, world!" when you run it.
It is fully customizable.

’’;
homepage = http://www.gnu.org/software/hello/manual/;
license = "GPLv3+";

};

Meta-attributes are not passed to the builder of the package. Thus, a change to a meta-attribute doesn’t trigger a recompilation of
the package. The value of a meta-attribute must a string.

The meta-attributes of a package can be queried from the command-line using nix-env:

$ nix-env -qa hello --meta --xml
<?xml version=’1.0’ encoding=’utf-8’?>
<items>
<item attrPath="hello" name="hello-2.3" system="i686-linux">
<meta name="description" value="A program that produces a familiar, friendly greeting" ←↩

/>
<meta name="homepage" value="http://www.gnu.org/software/hello/manual/" />
<meta name="license" value="GPLv3+" />
<meta name="longDescription" value="GNU Hello is a program that prints "Hello, ←↩

world!" when you run it.
It is fully customizable.
" />
</item>

</items>

nix-env knows about the description field specifically:

$ nix-env -qa hello --description
hello-2.3 A program that produces a familiar, friendly greeting

4.1 Standard meta-attributes

The following meta-attributes have a standard interpretation:

Nixpkgs Manual 14 / 24

description A short (one-line) description of the package. This is shown by nix-env -q --description and also on the
Nixpkgs release pages.

Don’t include a period at the end. Don’t include newline characters. Capitalise the first character. For brevity, don’t repeat
the name of package — just describe what it does.

Wrong: "libpng is a library that allows you to decode PNG images."

Right: "A library for decoding PNG images"

longDescription An arbitrarily long description of the package.

homepage The package’s homepage. Example: http://www.gnu.org/software/hello/manual/

license The license for the package. See below for the allowed values.

maintainers A list of names and e-mail addresses of the maintainers of this Nix expression, e.g. ["Alice <alice@
example.org>" "Bob <bob@example.com>"]. If you are the maintainer of multiple packages, you may want to
add yourself to pkgs/lib/maintainers.nix and write something like [stdenv.lib.maintainers.alice
stdenv.lib.maintainers.bob].

priority The priority of the package, used by nix-env to resolve file name conflicts between packages. See the Nix manual
page for nix-env for details. Example: "10" (a low-priority package).

4.2 Licenses

Note
This is just a first attempt at standardising the license attribute.

The meta.license attribute must be one of the following:

GPL GNU General Public License; version not specified.

GPLv2 GNU General Public License, version 2.

GPLv2+ GNU General Public License, version 2 or higher.

GPLv3 GNU General Public License, version 3.

GPLv3+ GNU General Public License, version 3 or higher.

bsd Catch-all for licenses that are essentially similar to the original BSD license with the advertising clause removed, i.e.
permissive non-copyleft free software licenses. This includes the X11 (“MIT”) License.

perl5 The Perl 5 license (Artistic License, version 1 and GPL, version 1 or later).

free Catch-all for free software licenses not listed above.

free-copyleft Catch-all for free, copyleft software licenses not listed above.

free-non-copyleft Catch-all for free, non-copyleft software licenses not listed above.

unfree-redistributable Unfree package that can be redistributed in binary form. That is, it’s legal to redistribute the
output of the derivation. This means that the package can be included in the Nixpkgs channel.

Sometimes proprietary software can only be redistributed unmodified. Make sure the builder doesn’t actually modify
the original binaries; otherwise we’re breaking the license. For instance, the NVIDIA X11 drivers can be redistributed
unmodified, but our builder applies patchelf to make them work. Thus, its license is unfree and it cannot be included in
the Nixpkgs channel.

unfree Unfree package that cannot be redistributed. You can build it yourself, but you cannot redistribute the output of the
derivation. Thus it cannot be included in the Nixpkgs channel.

unfree-redistributable-firmware This package supplies unfree, redistributable firmware. This is a separate value
from unfree-redistributable because not everybody cares whether firmware is free.

https://github.com/NixOS/nixpkgs/blob/master/pkgs/lib/maintainers.nix
http://www.gnu.org/licenses/license-list.html#ModifiedBSD
http://www.gnu.org/licenses/license-list.html#X11License

Nixpkgs Manual 15 / 24

Chapter 5

Support for specific programming languages

The standard build environment makes it easy to build typical Autotools-based packages with very little code. Any other kind
of package can be accomodated by overriding the appropriate phases of stdenv. However, there are specialised functions in
Nixpkgs to easily build packages for other programming languages, such as Perl or Haskell. These are described in this chapter.

5.1 Perl

Nixpkgs provides a function buildPerlPackage, a generic package builder function for any Perl package that has a standard
Makefile.PL. It’s implemented in pkgs/development/perl-modules/generic.

Perl packages from CPAN are defined in pkgs/perl-packages.nix, rather than pkgs/all-packages.nix. Most
Perl packages are so straight-forward to build that they are defined here directly, rather than having a separate function for each
package called from perl-packages.nix. However, more complicated packages should be put in a separate file, typically
in pkgs/development/perl-modules. Here is an example of the former:

ClassC3 = buildPerlPackage rec {
name = "Class-C3-0.21";
src = fetchurl {
url = "mirror://cpan/authors/id/F/FL/FLORA/${name}.tar.gz";
sha256 = "1bl8z095y4js66pwxnm7s853pi9czala4sqc743fdlnk27kq94gz";

};
};

Note the use of mirror://cpan/, and the ${name} in the URL definition to ensure that the name attribute is consistent with
the source that we’re actually downloading. Perl packages are made available in all-packages.nix through the variable
perlPackages. For instance, if you have a package that needs ClassC3, you would typically write

foo = import ../path/to/foo.nix {
inherit stdenv fetchurl ...;
inherit (perlPackages) ClassC3;

};

in all-packages.nix. You can test building a Perl package as follows:

$ nix-build -A perlPackages.ClassC3

buildPerlPackage adds perl- to the start of the name attribute, so the package above is actually called perl-Class-
C3-0.21. So to install it, you can say:

$ nix-env -i perl-Class-C3

(Of course you can also install using the attribute name: nix-env -i -A perlPackages.ClassC3.)

So what does buildPerlPackage do? It does the following:

https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/perl-modules/generic
https://github.com/NixOS/nixpkgs/blob/master/pkgs/top-level/perl-packages.nix

Nixpkgs Manual 16 / 24

1. In the configure phase, it calls perl Makefile.PL to generate a Makefile. You can set the variable makeMakerFl
ags to pass flags to Makefile.PL

2. It adds the contents of the PERL5LIB environment variable to #! .../bin/perl line of Perl scripts as -Idir flags.
This ensures that a script can find its dependencies.

3. In the fixup phase, it writes the propagated build inputs (propagatedBuildInputs) to the file $out/nix-support/
propagated-user-env-packages. nix-env recursively installs all packages listed in this file when you install a
package that has it. This ensures that a Perl package can find its dependencies.

buildPerlPackage is built on top of stdenv, so everything can be customised in the usual way. For instance, the Berke
leyDB module has a preConfigure hook to generate a configuration file used by Makefile.PL:

{buildPerlPackage, fetchurl, db4}:

buildPerlPackage rec {
name = "BerkeleyDB-0.36";

src = fetchurl {
url = "mirror://cpan/authors/id/P/PM/PMQS/${name}.tar.gz";
sha256 = "07xf50riarb60l1h6m2dqmql8q5dij619712fsgw7ach04d8g3z1";

};

preConfigure = ’’
echo "LIB = ${db4}/lib" > config.in
echo "INCLUDE = ${db4}/include" >> config.in

’’;
}

Dependencies on other Perl packages can be specified in the buildInputs and propagatedBuildInputs attributes. If
something is exclusively a build-time dependency, use buildInputs; if it’s (also) a runtime dependency, use propagatedB
uildInputs. For instance, this builds a Perl module that has runtime dependencies on a bunch of other modules:

ClassC3Componentised = buildPerlPackage rec {
name = "Class-C3-Componentised-1.0004";
src = fetchurl {
url = "mirror://cpan/authors/id/A/AS/ASH/${name}.tar.gz";
sha256 = "0xql73jkcdbq4q9m0b0rnca6nrlvf5hyzy8is0crdk65bynvs8q1";

};
propagatedBuildInputs = [
ClassC3 ClassInspector TestException MROCompat

];
};

5.2 Python

Python packages that use setuptools, which many Python packages do nowadays, can be built very simply using the bui
ldPythonPackage function. This function is implemented in pkgs/development/python-modules/generic/
default.nix and works similarly to buildPerlPackage. (See Section 5.1 for details.)

Python packages that use buildPythonPackage are defined in pkgs/top-level/python-packages.nix. Most of
them are simple. For example:

twisted = buildPythonPackage {
name = "twisted-8.1.0";

src = fetchurl {
url = http://tmrc.mit.edu/mirror/twisted/Twisted/8.1/Twisted-8.1.0.tar.bz2;
sha256 = "0q25zbr4xzknaghha72mq57kh53qw1bf8csgp63pm9sfi72qhirl";

http://pypi.python.org/pypi/setuptools/
https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/python-modules/generic/default.nix
https://github.com/NixOS/nixpkgs/blob/master/pkgs/development/python-modules/generic/default.nix
https://github.com/NixOS/nixpkgs/blob/master/pkgs/top-level/python-packages.nix

Nixpkgs Manual 17 / 24

};

propagatedBuildInputs = [pkgs.ZopeInterface];

meta = {
homepage = http://twistedmatrix.com/;
description = "Twisted, an event-driven networking engine written in Python";
license = "MIT";

};
};

5.3 Java

Java packages should install JAR files in $out/lib/java.

Nixpkgs Manual 18 / 24

Chapter 6

Package Notes

This chapter contains information about how to use and maintain the Nix expressions for a number of specific packages, such as
the Linux kernel or X.org.

6.1 Linux kernel

The Nix expressions to build the Linux kernel are in pkgs/os-specific/linux/kernel.

The function that builds the kernel has an argument kernelPatches which should be a list of {name, patch, ext
raConfig} attribute sets, where name is the name of the patch (which is included in the kernel’s meta.description
attribute), patch is the patch itself (possibly compressed), and extraConfig (optional) is a string specifying extra options to
be concatenated to the kernel configuration file (.config).

The kernel derivation exports an attribute features specifying whether optional functionality is or isn’t enabled. This is used
in NixOS to implement kernel-specific behaviour. For instance, if the kernel has the iwlwifi feature (i.e. has built-in support
for Intel wireless chipsets), then NixOS doesn’t have to build the external iwlwifi package:

modulesTree = [kernel]
++ pkgs.lib.optional (!kernel.features ? iwlwifi) kernelPackages.iwlwifi
++ ...;

How to add a new (major) version of the Linux kernel to Nixpkgs:

1. Copy the old Nix expression (e.g. linux-2.6.21.nix) to the new one (e.g. linux-2.6.22.nix) and update it.

2. Add the new kernel to all-packages.nix (e.g., create an attribute kernel_2_6_22).

3. Now we’re going to update the kernel configuration. First unpack the kernel. Then for each supported platform (i686,
x86_64, uml) do the following:

(a) Make an copy from the old config (e.g. config-2.6.21-i686-smp) to the new one (e.g. config-2.6.
22-i686-smp).

(b) Copy the config file for this platform (e.g. config-2.6.22-i686-smp) to .config in the kernel source tree.

(c) Run make oldconfig ARCH={i386,x86_64,um} and answer all questions. (For the uml configuration, also
add SHELL=bash.) Make sure to keep the configuration consistent between platforms (i.e. don’t enable some
feature on i686 and disable it on x86_64).

(d) If needed you can also run make menuconfig:

$ nix-env -i ncurses
$ export NIX_CFLAGS_LINK=-lncurses
$ make menuconfig ARCH=arch

https://github.com/NixOS/nixpkgs/blob/master/pkgs/os-specific/linux/kernel

Nixpkgs Manual 19 / 24

(e) Make sure that CONFIG_FB_TILEBLITTING is not set (otherwise fbsplash won’t work). This option has a ten-
dency to be enabled as a side-effect of other options. If it is, investigate why (there’s probably another option that
forces it to be on) and fix it.

(f) Copy .config over the new config file (e.g. config-2.6.22-i686-smp).

4. Test building the kernel: nix-build -A kernel_2_6_22. If it compiles, ship it! For extra credit, try booting NixOS
with it.

5. It may be that the new kernel requires updating the external kernel modules and kernel-dependent packages listed in the
kernelPackagesFor function in all-packages.nix (such as the NVIDIA drivers, AUFS, splashutils, etc.). If
the updated packages aren’t backwards compatible with older kernels, you need to keep the older versions and use some
conditionals. For example, new kernels require splashutils 1.5 while old kernel require 1.3, so kernelPackagesFor
says:

splashutils =
if kernel.features ? fbSplash then splashutils_13 else
if kernel.features ? fbConDecor then splashutils_15 else
null;

splashutils_13 = ...;
splashutils_15 = ...;

6.2 X.org

The Nix expressions for the X.org packages reside in pkgs/servers/x11/xorg/default.nix. This file is automatically
generated from lists of tarballs in an X.org release. As such it should not be modified directly; rather, you should modify the
lists, the generator script or the file pkgs/servers/x11/xorg/overrides.nix, in which you can override or add to the
derivations produced by the generator.

The generator is invoked as follows:

$ cd pkgs/servers/x11/xorg
$ cat tarballs-7.5.list extra.list old.list \
| perl ./generate-expr-from-tarballs.pl

For each of the tarballs in the .list files, the script downloads it, unpacks it, and searches its configure.ac and *.pc.in
files for dependencies. This information is used to generate default.nix. The generator caches downloaded tarballs between
runs. Pay close attention to the NOT FOUND:namemessages at the end of the run, since they may indicate missing dependencies.
(Some might be optional dependencies, however.)

A file like tarballs-7.5.list contains all tarballs in a X.org release. It can be generated like this:

$ export i="mirror://xorg/X11R7.4/src/everything/"
$ cat $(PRINT_PATH=1 nix-prefetch-url $i | tail -n 1) \
| perl -e ’while (<>) { if (/(href|HREF)="([^"]*.bz2)"/) { print "$ENV{’i’}$2\n"; }; }’ \
| sort > tarballs-7.4.list

extra.list contains libraries that aren’t part of X.org proper, but are closely related to it, such as libxcb. old.list
contains some packages that were removed from X.org, but are still needed by some people or by other packages (such as
imake).

If the expression for a package requires derivation attributes that the generator cannot figure out automatically (say, patches
or a postInstall hook), you should modify pkgs/servers/x11/xorg/overrides.nix.

Nixpkgs Manual 20 / 24

Chapter 7

Coding conventions

7.1 Syntax

• Use 2 spaces of indentation per indentation level in Nix expressions, 4 spaces in shell scripts.

• Do not use tab characters, i.e. configure your editor to use soft tabs. For instance, use (setq-default indent-tabs-
mode nil) in Emacs. Everybody has different tab settings so it’s asking for trouble.

• Use lowerCamelCase for variable names, not UpperCamelCase. TODO: naming of attributes in all-packages.
nix?

• Function calls with attribute set arguments are written as

foo {
arg = ...;

}

not

foo
{
arg = ...;

}

Also fine is

foo { arg = ...; }

if it’s a short call.

• In attribute sets or lists that span multiple lines, the attribute names or list elements should be aligned:

A long list.
list =
[elem1
elem2
elem3

];

A long attribute set.
attrs =
{ attr1 = short_expr;
attr2 =
if true then big_expr else big_expr;

};

Nixpkgs Manual 21 / 24

Alternatively:
attrs = {
attr1 = short_expr;
attr2 =
if true then big_expr else big_expr;

};

• Short lists or attribute sets can be written on one line:

A short list.
list = [elem1 elem2 elem3];

A short set.
attrs = { x = 1280; y = 1024; };

• Breaking in the middle of a function argument can give hard-to-read code, like

someFunction { x = 1280;
y = 1024; } otherArg
yetAnotherArg

(especially if the argument is very large, spanning multiple lines).

Better:

someFunction
{ x = 1280; y = 1024; }
otherArg
yetAnotherArg

or

let res = { x = 1280; y = 1024; };
in someFunction res otherArg yetAnotherArg

• The bodies of functions, asserts, and withs are not indented to prevent a lot of superfluous indentation levels, i.e.

{ arg1, arg2 }:
assert system == "i686-linux";
stdenv.mkDerivation { ...

not

{ arg1, arg2 }:
assert system == "i686-linux";
stdenv.mkDerivation { ...

• Function formal arguments are written as:

{ arg1, arg2, arg3 }:

but if they don’t fit on one line they’re written as:

{ arg1, arg2, arg3
, arg4, ...
, # Some comment...
argN

}:

• Functions should list their expected arguments as precisely as possible. That is, write

Nixpkgs Manual 22 / 24

{ stdenv, fetchurl, perl }: ...

instead of

args: with args; ...

or

{ stdenv, fetchurl, perl, ... }: ...

For functions that are truly generic in the number of arguments (such as wrappers around mkDerivation) that have some
required arguments, you should write them using an @-pattern:

{ stdenv, doCoverageAnalysis ? false, ... } @ args:

stdenv.mkDerivation (args // {
... if doCoverageAnalysis then "bla" else "" ...

})

instead of

args:

args.stdenv.mkDerivation (args // {
... if args ? doCoverageAnalysis && args.doCoverageAnalysis then "bla" else "" ...

})

7.2 Package naming

In Nixpkgs, there are generally three different names associated with a package:

• The name attribute of the derivation (excluding the version part). This is what most users see, in particular when using nix-env.

• The variable name used for the instantiated package in all-packages.nix, and when passing it as a dependency to other
functions. This is what Nix expression authors see. It can also be used when installing using nix-env -iA.

• The filename for (the directory containing) the Nix expression.

Most of the time, these are the same. For instance, the package e2fsprogs has a name attribute "e2fsprogs-version",
is bound to the variable name e2fsprogs in all-packages.nix, and the Nix expression is in pkgs/os-specific/
linux/e2fsprogs/default.nix. However, identifiers in the Nix language don’t allow certain characters (e.g. dashes),
so sometimes a different variable name should be used. For instance, the module-init-tools package is bound to the
module_init_tools variable in all-packages.nix.

There are a few naming guidelines:

• Generally, try to stick to the upstream package name.

• Don’t use uppercase letters in the name attribute — e.g., "mplayer-1.0rc2" instead of "MPlayer-1.0rc2".

• The version part of the name attribute must start with a digit (following a dash) — e.g., "hello-0.3-pre-r3910" instead
of "hello-svn-r3910", as the latter would be seen as a package named hello-svn by nix-env.

• Dashes in the package name should be changed to underscores in variable names, rather than to camel case — e.g., module_
init_tools instead of moduleInitTools.

• If there are multiple versions of a package, this should be reflected in the variable names in all-packages.nix, e.g.
hello_0_3 and hello_0_4. If there is an obvious “default” version, make an attribute like hello =hello_0_4;.

Nixpkgs Manual 23 / 24

7.3 File naming and organisation

Names of files and directories should be in lowercase, with dashes between words — not in camel case. For instance, it should
be all-packages.nix, not allPackages.nix or AllPackages.nix.

7.3.1 Hierachy

Each package should be stored in its own directory somewhere in the pkgs/ tree, i.e. in pkgs/category/subcategory/..
./pkgname. Below are some rules for picking the right category for a package. Many packages fall under several categories;
what matters is the primary purpose of a package. For example, the libxml2 package builds both a library and some tools; but
it’s a library foremost, so it goes under pkgs/development/libraries.

When in doubt, consider refactoring the pkgs/ tree, e.g. creating new categories or splitting up an existing category.

If it’s used to support software development:

If it’s a library used by other packages: development/libraries (e.g. libxml2)

If it’s a compiler: development/compilers (e.g. gcc)

If it’s an interpreter: development/interpreters (e.g. guile)

If it’s a (set of) development tool(s):
If it’s a parser generator (including lexers): development/tools/parsing (e.g. bison, flex)
If it’s a build manager: development/tools/build-managers (e.g. gnumake)
Else: development/tools/misc (e.g. binutils)

Else: development/misc

If it’s a (set of) tool(s): (A tool is a relatively small program, especially one intented to be used non-interactively.)

If it’s for networking: tools/networking (e.g. wget)

If it’s for text processing: tools/text (e.g. diffutils)

If it’s a system utility, i.e., something related or essential to the operation of a system: tools/system (e.g. cron)

If it’s an archiver (which may include a compression function): tools/archivers (e.g. zip, tar)

If it’s a compression program: tools/compression (e.g. gzip, bzip2)

If it’s a security-related program: tools/security (e.g. nmap, gnupg)

Else: tools/misc

If it’s a shell: shells (e.g. bash)

If it’s a server:

If it’s a web server: servers/http (e.g. apache-httpd)

If it’s an implementation of the X Windowing System: servers/x11 (e.g. xorg — this includes the client libraries
and programs)

Else: servers/misc

If it’s a desktop environment (including window managers): desktops (e.g. kde, gnome, enlightenment)

If it’s an application: A (typically large) program with a distinct user interface, primarily used interactively.

If it’s a version management system: applications/version-management (e.g. subversion)

If it’s for video playback / editing: applications/video (e.g. vlc)

If it’s for graphics viewing / editing: applications/graphics (e.g. gimp)

If it’s for networking:
If it’s a mailreader: applications/networking/mailreaders (e.g. thunderbird)

Nixpkgs Manual 24 / 24

If it’s a newsreader: applications/networking/newsreaders (e.g. pan)
If it’s a web browser: applications/networking/browsers (e.g. firefox)
Else: applications/networking/misc

Else: applications/misc

If it’s data (i.e., does not have a straight-forward executable semantics):

If it’s a font: data/fonts

If it’s related to SGML/XML processing:
If it’s an XML DTD: data/sgml+xml/schemas/xml-dtd (e.g. docbook)
If it’s an XSLT stylesheet: (Okay, these are executable...)

data/sgml+xml/stylesheets/xslt (e.g. docbook-xsl)

If it’s a game: games

Else: misc

7.3.2 Versioning

Because every version of a package in Nixpkgs creates a potential maintenance burden, old versions of a package should not be
kept unless there is a good reason to do so. For instance, Nixpkgs contains several versions of GCC because other packages don’t
build with the latest version of GCC. Other examples are having both the latest stable and latest pre-release version of a package,
or to keep several major releases of an application that differ significantly in functionality.

If there is only one version of a package, its Nix expression should be named e2fsprogs/default.nix. If there are
multiple versions, this should be reflected in the filename, e.g. e2fsprogs/1.41.8.nix and e2fsprogs/1.41.9.nix.
The version in the filename should leave out unnecessary detail. For instance, if we keep the latest Firefox 2.0.x and 3.5.x
versions in Nixpkgs, they should be named firefox/2.0.nix and firefox/3.5.nix, respectively (which, at a given
point, might contain versions 2.0.0.20 and 3.5.4). If a version requires many auxiliary files, you can use a subdirectory for
each version, e.g. firefox/2.0/default.nix and firefox/3.5/default.nix.

All versions of a package must be included in all-packages.nix to make sure that they evaluate correctly.

	Introduction
	Quick Start to Adding a Package
	The Standard Environment
	Using stdenv
	Tools provided by stdenv
	Attributes
	Phases
	Controlling phases
	The unpack phase
	The patch phase
	The configure phase
	The build phase
	The check phase
	The install phase
	The fixup phase
	The distribution phase

	Shell functions
	Package setup hooks
	Purity in Nixpkgs

	Meta-attributes
	Standard meta-attributes
	Licenses

	Support for specific programming languages
	Perl
	Python
	Java

	Package Notes
	Linux kernel
	X.org

	Coding conventions
	Syntax
	Package naming
	File naming and organisation
	Hierachy
	Versioning

